hemolearn.deconvolution.blind_deconvolution_multiple_subjects¶
-
hemolearn.deconvolution.
blind_deconvolution_multiple_subjects
(X, t_r, hrf_rois, hrf_model='scaled_hrf', shared_spatial_maps=False, deactivate_v_learning=False, deactivate_z_learning=False, deactivate_u_learning=False, n_atoms=10, n_times_atom=60, prox_z='tv', lbda_strategy='ratio', lbda=0.1, rho=2.0, delta_init=1.0, u_init_type='ica', eta=10.0, z_init=None, prox_u='l1-positive-simplex', max_iter=100, get_obj=0, get_time=False, random_seed=None, early_stopping=True, eps=1e-05, raise_on_increase=True, verbose=0)¶ Multivariate Blind Deconvolution main function for mulitple subjects.
- Parameters
- Xarray, shape (n_voxels, n_times), fMRI data
- t_rfloat, Time of Repetition, fMRI acquisition parameter, the temporal
resolution
- hrf_roisdict (key: ROIs labels, value: indices of voxels of the ROI)
atlas HRF
- hrf_modelstr, (default=’3_basis_hrf’), type of HRF model, possible
choice are [‘3_basis_hrf’, ‘2_basis_hrf’, ‘scaled_hrf’]
- shared_spatial_mapsbool, whether or not to learn a single set of
spatials maps accross subjects.
- deactivate_v_learningbool, (default=False), option to force the
estimated HRF to to the initial value.
- deactivate_z_learningbool, (default=False), option to force the
estimated z to its initial value.
- deactivate_u_learningbool, (default=False), option to force the
estimated u to its initial value.
- n_atomsint, number of components on which to decompose the neural
activity (number of temporal components and its associated spatial maps).
- n_times_atomint, (default=30), number of points on which represent the
Haemodynamic Response Function (HRF), this leads to the duration of the response function, duration = n_times_atom * t_r
- prox_zstr, (default=’tv’), temporal proximal operator should be in
[‘tv’, ‘l1’, ‘l2’, ‘elastic-net’]
- lbda_strategy str, (default=’ratio’), strategy to fix the temporal
regularization parameter, possible choice are [‘ratio’, ‘fixed’]
- lbdafloat, (default=0.1), whether the temporal regularization parameter
if lbda_strategy == ‘fixed’ or the ratio w.r.t lambda max if lbda_strategy == ‘ratio’
- rhofloat, (default=2.0), the elastic-net temporal regularization
parameter
- delta_initfloat, (default=1.0), the initialization value for the HRF
dilation parameter
- u_init_typestr, (default=’ica’), strategy to init u, possible value are
[‘gaussian_noise’, ‘ica’, ‘patch’]
- etafloat, (default=10.0), the spatial sparsity regularization parameter
- z_initNone or array, (default=None), initialization of z, if None, z is
initialized to zero
- prox_ustr, (default=’l2-positive-ball’), constraint to impose on the
spatial maps possible choice are [‘l2-positive-ball’, ‘l1-positive-simplex’, ‘positive’]
- max_iterint, (default=100), maximum number of iterations to perform the
analysis
- random_seedNone, int, random-instance, (default=None), random-instance
or random-seed used to initialize the analysis
- early_stoppingbool, (default=True), whether to early stop the analysis
- epsfloat, (default=1.0e-4), stoppping parameter w.r.t evolution of the
cost-function
- raise_on_increasebool, (default=True), whether to stop the analysis if
the cost-function increases during an iteration. This can be due to the fact that the temporal regularization parameter is set to high
- verboseint, (default=0), verbose level, 0 no verbose, 1 low verbose,
2 (or more) maximum verbose